Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Vet J ; 14(1): 534-544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633187

RESUMEN

Background: Equine herpesvirus type 1 (EHV-1) is a major cause of abortion and respiratory disease. Equine herpesvirus type 4 (EHV-4), on the other hand, is exclusively associated with respiratory disease in horse populations worldwide, particularly in Egypt and Arabian countries. Aim: This study aims to investigate the circulation of EHV-1 and EHV-4 in the Arabian horse population through molecular detection and genetic characterization of EHV-1 and/or EHV-4 that may threaten the stability of horse industry. Methods: A total of 80 samples including 50 nasal swabs, 10 vaginal swabs and 20 whole blood samples were collected from vaccinated and registered pure-bred Arabian adult horses from different studs in the governorates of northern Egypt (Cairo, Dakahlyia and Qalyubia) from 2021 to 2022. The collected samples were screened using consensus PCR for detection of EHVs using specific primers targeting DNA polymerase gene. The positive samples were subjected to conventional PCR for detection of EHV-1 and/or EHV-4using specific primers targeting glycoprotein (gB) gene. EHV-1 and EHV-4 amplicons were partially sequenced and phylogenetically analyzed using Sanger method. Results: Consensus PCR revealed that 48 out of 80 samples were positive for EHVs with percentage of 60%. Typing of the selected positive samples using conventional PCR showed that 29 out of 80 were positive for EHV-1 with percentage 36.25%, while 24 out of 80 samples were positive for EHV-4 with percentage 30%. Mixed infections with both viruses were detected in five samples. The amplified products were sequenced using Sanger method and submitted to GenBank under accession number OM362231MG-1 for EHV-1 strain and OM362232 MG-4 for EHV-4 strain. Sequence analysis and alignments of the amplified fragments of the EHV-1 and EHV-4 glycoprotein B (gB) gene to that of GenBank-derived reference strains revealed a high degree of similarity. According to the phylogenetic tree, the obtained sequences of EHV-1 and 4 in the current study showed homogeneity with local Egyptian and foreign EHV-1 and 4 strains and heterogeneity with EHV-2 and 5. Conclusion: The current investigation showed that molecular methods are appropriate assays for an efficient and accurate diagnosis of EHVs. Furthermore, it supports earlier research findings about the prevalence of EHV-1 and 4 in Arabian horse populations in Egypt.


Asunto(s)
Infecciones por Herpesviridae , Herpesviridae , Enfermedades de los Caballos , Embarazo , Femenino , Caballos , Animales , Egipto , Infecciones por Herpesviridae/veterinaria , Filogenia , Herpesviridae/genética , Enfermedades de los Caballos/diagnóstico , Glicoproteínas
2.
Vet World ; 11(8): 1150-1158, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250377

RESUMEN

BACKGROUND AND AIM: Lumpy skin disease (LSD) is a highly infectious viral disease upsetting cattle, caused by LSD virus (LSDV) within the family Poxviridae. Sporadic cases of LSD have been observed in cattle previously vaccinated with the Romanian sheep poxvirus (SPPV) vaccine during the summer of 2016 in Sharkia province, Egypt. The present study was undertaken to perform molecular characterization of LSDV strains which circulated in this period as well as investigate their phylogenetic relatedness with published reference capripoxvirus genome sequences. MATERIALS AND METHODS: A total of 82 skin nodules, as well as 5 lymph nodes, were collected from suspect LSD cases, and the virus was isolated in embryonated chicken eggs (ECEs). LSD was confirmed by polymerase chain reactions amplification of the partial and full-length sequences of the attachment and G-protein-coupled chemokine receptor (GPCR) genes, respectively, as well as a histopathological examination of the lesions. Molecular characterization of the LSDV isolates was conducted by sequencing the GPCR gene. RESULTS: Characteristic skin nodules that covered the whole intact skin, as well as lymphadenopathy, were significant clinical signs in all suspected cases. LSDV isolation in ECEs revealed the characteristic focal white pock lesions dispersed on the chorioallantoic membranes. Histopathologic examination showed characteristic eosinophilic intracytoplasmic inclusion bodies within inflammatory cell infiltration. Phylogenetic analysis revealed that the LSDV isolates were clustered together with other African and European LSDV strains. In addition, the LSDV isolates have a unique signature of LSDVs (A11, T12, T34, S99, and P199). CONCLUSION: LSDV infections have been detected in cattle previously vaccinated with Romanian SPPV vaccine during the summer of 2016 and making the evaluation of vaccine efficacy under field conditions necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...